Showing posts with label Benjamin Sovacool. Show all posts
Showing posts with label Benjamin Sovacool. Show all posts

Friday, May 2, 2008

Sovacool Strikes Again

Benjamin Sovacool - or as he is known to his friends as Dr Benjamin K. Sovacool - is at it again. This time he is attacking nuclear power by arguing in effect that nuclear power plants are accident prone. I have elsewhere in this blog and in bartoncii noted the accident history of dams and the potential danger of dam accidents. Dr Benjamin K. Sovacool has used his connection with the scitizen web site to launch an anti-nuclear crusade. His latest posting is based on a paper he is publishing this month: “The Costs of Failure: A Preliminary Assessment of Major Energy Accidents, 1907 to 2007.” Sovacool's scitizen essay is called, "The Costs of Major Energy Accidents, 1907 to 2007." I will presently show that both titles are misnomers because Sovocool ignores thousands of energy related accidents and tens of thousands of of energy related deaths.

Sovacool tells us, "From 1907 to 2007, a new study finds that 279 major energy accidents in the coal, oil, natural gas, hydroelectric, and nuclear sectors have been responsible for $41 billion in damages and 182,156 deaths." Of course the study is his own. Notice he refers to energy sectors in his introduction. The term "energy sector" is usually understood to refers to the exploration, production, marketing, refining and/or transportation, and use of energy sources including oil and gas, coal, nuclear energy, renewable energy and alternative fuels.

Sovacool asks, "what counts as an energy “accident,” especially a “major” one?" We will presently see that a great many energy sector accidents do not count in Sovacool's research.

How does sovacool get his information. He tells us, "by searching historical archives, newspaper and magazine articles, and press wire reports from 1907 to 2007." this would in fact be far to great a task for one person to undertake in a lifetime, let lone a person of such great intellectual accomplishments that he holds a PhD from an institution of higher learning found in Blacksburg, Virginia. There are however shortcuts. Sovacool tells us. "The words “energy,” “electricity,” “oil,” “coal,” “natural gas,” “nuclear,” “renewable,” and “hydroelectric” were searched in the same sentence as the words “accident,” “disaster,” “incident,” “failure,” “meltdown,” “explosion,” “spill,” and 'leak.'" well this distinctly sounds like that well known research method called googling.

How did Sovacool decide to pick out accidents to study? He reports his criteria as follows:

# The accident must have involved an energy system at the production/generation, transmission, and distribution phase. This means it must have occurred at an oil, coal, natural gas, nuclear, renewable, or hydroelectric plant, its associated infrastructure, or within its fuel cycle (mine, refinery, pipeline, enrichment facility, etc.);
# It must have resulted in at least one death or property damage above $50,000 (in constant dollars that has not been normalized for growth in capital stock);
# It had to be unintentional and in the civilian sector, meaning that military accidents and events during war and conflict are not covered, nor are intentional attacks. The study only counted documented cases of accident and failure;
# It had to occur between August, 1907 and August, 2007;
# It had to be verified by a published source;

Almost immediately Sovacool's research failure emerges. He writes:
"While responsible for less than 1 percent of total energy accidents, hydroelectric facilities claimed 94 percent of reported fatalities. Looking at the gathered data, the total results on fatalities are highly dominated one accident in which the Shimantan Dam failed in 1975 and 171,000 people perished."

In fact not one but 62 Chinese dams failed in the 1975 dam disaster, and the Shimantan Dam was not the largest.

Sovacool reported finding "279 accidents" which meet his criteria. This is an astonishingly small number, and is a certain clue that something is seriously amiss with Sovacool's study.

How far has Sovacool missed the marek in his study? He tells us "The second largest source of fatalities, nuclear reactors, is also the second most capital intense, supporting the notion that the larger a facility the more grave (albeit rare) the consequences of its failure."

In fact had Sovacool not made such stupendous blunders in his research, he would have known that neither of these assertions were true. Arguably the largest number of fatalities are associated with the hydroelectric sector since around 200,000 people were killed by or died as a result of the collapse of several dozen Chinese dams in 1975. It is quite possible that the cumulative death tolls for the coal mining industry is higher than the death toll for hydro. Sovacool mentions one oil pipeline in Nigeria, actually there were several. A 1998 accident at Jesse, Nigeria killed 1200 people. Two 2006 accidents killed 150 and 500 people. An oil pipeline explosion kills 508 in Cubatão, Brazil, during 1984. Other oil pipeline disasters have occurred.Sovacool also ignores oil welk fires, and both oil refinery fires and explosions. One explosion and fire in Texas City, in March 2005 killed 15 people and did hundreds of millions of dollars worth of damage. The U. S. Occupational Safety and Health Administration levied a $21 million fine against BP after the fire. A Shell Oil refinery fire, loss worth $49 million (2003 dollars), Roxana (IL), 1985. An oil refinery fire, in Norco (LA), 1988 did $513 million in damage. A Union Oil refinery fire kills 17 & loss worth $177 million (2003 dollars) at Romeoville (IL) in 1984. A Shamrock Oil & Gas Corp. refinery fire kills 19 firefighters at Sun Ray (TX) in 1956. A Phillips Petroleum plant fire, loss worth $1,113 million at Pasadena (TX) in 1989. A 1975 fire at the Gulf Oil Refinery Philadelphia killed 8 firefighters. Other large fires occured at the same refinery on May 16, 1975, and on October 20, 1975.

It would also appear that fatalities involving natural gas pipelines also accounted for far more casualties than nuclear power related accident. A single LPG pipeline explosion near Ufa in Russia killed up to 645 people on June 4, 1989.

Thus It would appear that the coal, hydroelectric, oil and natural gas sectors have accounted for a far higher death toll than the nuclear sector has.

What about property loss? In order to assess the cost of nuclear related accidents, relative to costs related to accidents in other sectors, we must have to make a comprehensive list sector accidents. Clearly coal mining and other coal sector related accidents might well involve greater property loss. Our lists of energy sector accidents would be extremely long, and involving literally thousands of accidents. Many accidents would involve the loss of human life, but thousands of accidents would meet Sovacool's property loss criteria. Since it is quite clear that Sovacool has failed to do include thousands of energy related accidents that would have meet his criteria in his research, no value can be ascribed to his work.

Sovocool has produced another typical example of his work. His research is weak, his research methods are suspects, and his conclusions will not withstand critical examination.

Benjamin K. Sovacool, “The Costs of Failure: A Preliminary Assessment of Major Energy Accidents, 1907 to 2007,” Energy Policy 36(5) (May, 2008), pp. 1802-1820.


Blog Archive

Some neat videos

Nuclear Advocacy Webring
Ring Owner: Nuclear is Our Future Site: Nuclear is Our Future
Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet
Get Your Free Web Ring
Dr. Joe Bonometti speaking on thorium/LFTR technology at Georgia Tech David LeBlanc on LFTR/MSR technology Robert Hargraves on AIM High