Saturday, May 17, 2008

Raymond Clare Briant

In 1957 Alvin Weinberg presented co-authored paper whose ostensive lead author, Raymond Clare Briant had been dead for three years. This is a procedure is sciece to memorialize a scientist who had made a significant contribution to a research project but who had died before the contribution could be recorded in a scientific paper. In the paper Weinberg recored:

At the Oak Ridge National Laboratory we have been investigating another class of fluids
which satisfies all three of the requirements for a desirable fluid fuel: large range of uranium and thorium solubility, low pressure, and no radiolytic gas production. These fluids, first suggested by R. C. Briant, are molten mixtures of UF4 and ThF4 with fluorides of the alkali metals, beryllium, or zirconium. In order to assess better the possibilities of molten fluoride reactors, ORNL in 1954 constructed and operated a high-temperature, molten-fluoride, circulating-fuel reactor with a BeO moderator and an outlet temperature which ranged above 1500°F (1100 K). The papers which will follow are a description of this reactor. Since the work was supported by the Aircraft Reactors Branch of the U. S, Atomic Energy Commission, the reactor was called the Aircraft Reactor Experiment (ARE).

Later Weinberg, in his autobiography/ was to elaborate Briant's role not only in the original concept of a Liquid Fluoride Reactor, but in the development of the first Loquid Fluoride Reactor.

ORNL, in the meantime, was gearing up for aircraft nuclear propulsion. At first Cecil Ellis was in charge. Cecil was a physicist who had organized the training of operators at the gaseous diffusion plant in the use of the newly invented helium mass spectrometers for the detection of leaks. He was a born teacher, and he carried out this important job effectively. He was also an optimistic showman: Cecil would adorn his office with large signs summarizing the current main line of the week; I particularly remember a huge sign that touted liquid lithium as the coolant for the indirect cycle. But Cecil, despite his great enthusiasms, was hardly equipped to head ORNL's aircraft nuclear propulsion project. For this I turned to Ray C. Briant.

Ray was an extraordinary combination of chemical engineer and applied mathematician. When he joined ORNL in 1948 he was about 50 years old. He had spend much of his career in the marble industry and he probably knew more about marble than any other American. During the war he worked at the Johns Hopkins Physics Laboratory with Larry Hafstad, and he came to ORNL at Larry's suggestion. Ray was brilliant, original and practical. Soon after he arrived I found myself more and more impressed with Ray's instinct both as a chemist and an engineer. Though Ray arrived about the same time as the TAB convened, he was not a member of the TAB. Instead he spent his time thinking about high-temperature reactors.

Note that I say high-temperature reactors, not aircraft reactors. Ray had little sympathy for the nuclear airplane. Though he was familiar with the arguments proving it was not impossible, he realized that the task was hardly feasible, and he was not convinced that the goal, if achieved, would be very useful. But a reactor operating at high enough temperature to energize chemical reactions - this was a valid, even attractive, goal.

At the time Ray took over, our group had chosen to concentrate on the liquid-metal-cooled indirect cycle. The reactor, basically a souped-up version of the submarine intermediate reactor of General Electric, was to consist of a block of beryllium oxide into which many long, thin cylindrical fuel elements were placed. Liquid sodium, sodium-potassium, or lithium was to flow over the fuel elements and deliver the reactor-generated heat to a heat exchanger. There the heat was picked up by the compressed air that drove the jet engine.

From the beginning, Ray was troubled by the concept. With his great experience with high-temperature materials, Ray could not believe that the fuel elements resembling jackstraws could retain their integrity at a temperature of 1,600 degrees F or higher, under extreme heat fluxes and neutron bombardment. He would ridicule the whole concept, saying, "The damn fuel elements will come out looking like spaghetti!"

Ray tried to visualize a reactor that was not a Swiss watch operating at red, even white, heat. This naturrally led him to the notion of liquid fuel: reactors that would have no solid-fuel elements to be deformed. Ray's idea struck a responsive chord in me, with my attachment to the aqueous homogeneous breeder ideas of Eugene Wigner and Harold Urey.

Raymond Clare Briant's death in 1954 must have been a significant blow to the ORNL Liquid Salt Reactor research. I have recently been in contact with Briant's grand daughter, Clare King. She is attempting to develop a more comple picture of her Grandfather.


Anonymous said...


I will forward this to my uncle. He was always quite proud of his father, as was my mother. In my ignorance, I never knew why.


Anonymous said...

Clare, I would go so far as to say that your grandfather invented one of the greatest technologies of the last century, if not the last several hundred years. I have studied the origins of the molten-salt reactor with great interest, and I've been struck by the discontinuity of thought that led R.C. Briant to his invention.

What I mean by "discontinuity of thought" was that there was very little in the previous art to guide Briant to his innovation. Reactors up til the early 1950s had utilized solid-fuel, although there was an effort at ORNL at about the same time using uranyl sulfate dissolved in water--the so-called "aqueous homogeneous reactor". But such a reactor had to operate under very high pressures and could not attain the temperatures needed for aircraft propulsion.

Briant saw that he needed a fluid form that would be stable against radiation damage and yet operate at very high temperatures at ambient pressure. His proposal (along with Bettis and Calkins) to use liquid-fluorides was revolutionary, in my opinion, and his intellectual bravery actually building such a reactor in 1954 still amazes me to this day.

I truly believe that your grandfather's discovery is THE answer to humanity's energy needs for the next thousand years, and even nearly 60 years after he made the discovery the world still hasn't woken up to what it means.

If you have a chance, please contact me at and take a look at a history of your grandfather's reactor I wrote here.

Anonymous said...

I'm blushing, Kirk.


I obviously have more to learn, about the molten salts and my grandfather.



Blog Archive

Some neat videos

Nuclear Advocacy Webring
Ring Owner: Nuclear is Our Future Site: Nuclear is Our Future
Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet Free Site Ring from Bravenet
Get Your Free Web Ring
Dr. Joe Bonometti speaking on thorium/LFTR technology at Georgia Tech David LeBlanc on LFTR/MSR technology Robert Hargraves on AIM High